<u>Día de Campo: "Presentación de estrategias para disminuir uso de aguas en viñas" en Super Fruit. Proyecto FIC</u> Viñas Sustentables e Inocuas I+D+i, IDI:30474717-0.

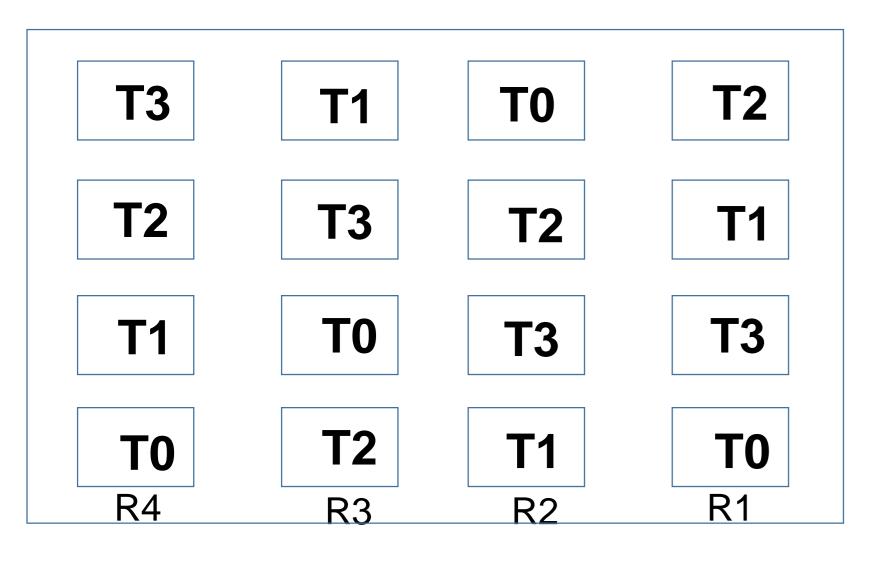
Comportamiento fisiológico, productivo y calidad del vino en cv. Cabernet Sauvignon, sometido a déficit hídrico y distintas técnicas para mitigar estrés por falta de agua.

Brossard, N., Bordeu, E., Bonomelli, C., Cea, D., Chávez, M., Knopp, D. y Gil, P.M.

Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile..

RESULTADOS

E-mail: pmgil@uc.cl


TRATAMIENTOS

El ensayo se realiza desde febrero del 2017 hasta la fecha, en fundo El Suspiro – Super Fruit con cv. Cabernet Sauvignon, conducida en Te Kauwhata 2 Tier (doble piso), ubicada en la comuna de Peralillo, provincia de Colchagua, Región de O´Higgins. Los tratamientos son los siguientes:

- T0: Riego habitual de la viña (control)
- T1: 75% del T0
- T2: T1+ Nano Riego (fig. 2)
- T3: T1 + Malla anti maleza (fig. 1)

El diseño experimental fue en Bloques Completamente al Azar, con 4 repeticiones para cada tratamiento y cada unidad experimental consta de 16 plantas (4 largo x 4 ancho).

Se compararon los tratamientos en función de su respuesta fisiológica, productividad, reservas, humedad de suelo y análisis químico del vino, se está realizando análisis sensorial de vino.

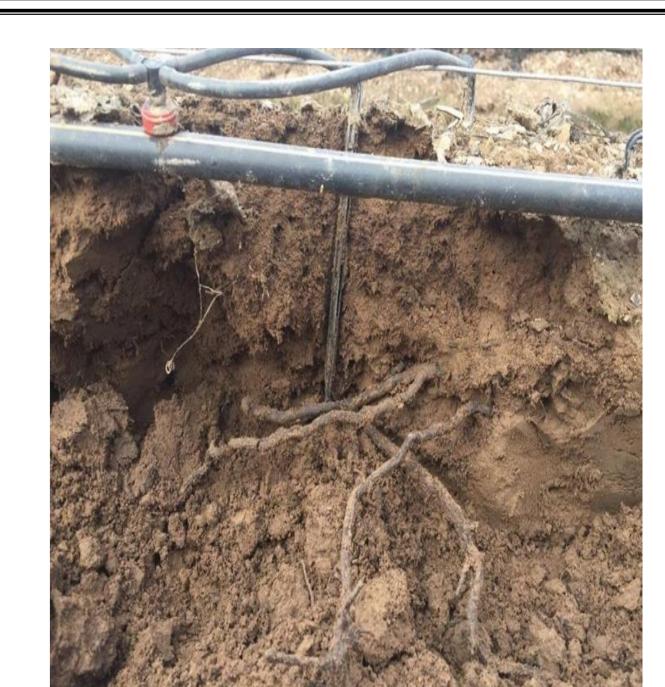
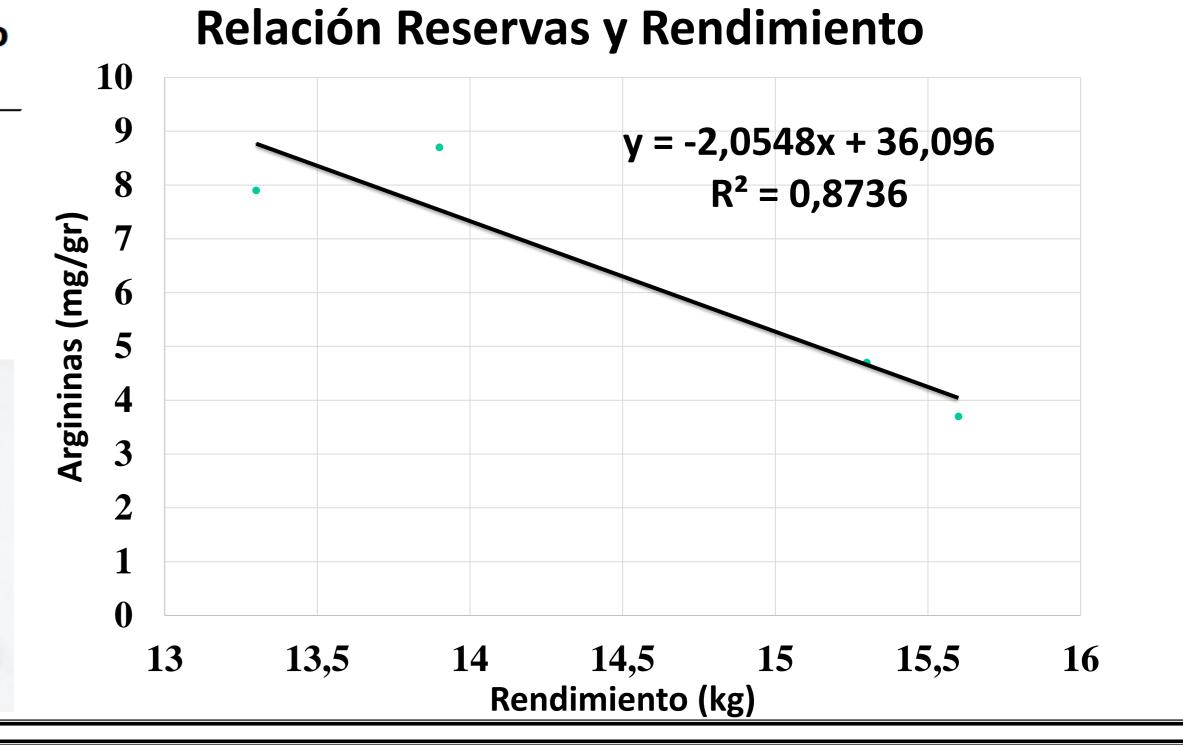


Figura 1. Tratamiento Anti-Maleza Mulch (T3) en cv. Carbernet Sauvignon

Figura 2. Simulación de nano riego (T2) en cv. Cabernet Sauvignon

TABLA 1: Análisis parámetros fisiológicos y humedad gravimétrica de suelo.

Fecha de		Fluoresencia	Contenido	Conductancia	Potencial	Humedad
monitoreo	Tratamiento		Relativo de	Estómatica	Xilemático	Gravimétrica
		(Fv/Fm)	Agua (%)	(mmol m-2 s-1)	(-bar)	(%)
	TO	0,82 a	79,13 ns	341,7 a	-5,78 a	10,59 ns
23-feb	T1	0,80 b	75,33 ns	244,125 c	-10 b	9,25 ns
(ET0 3,9mm)	T2	0,82 a	81,55 ns	305,775 ab	-6,13 a	12,53 ns
	Т3	0,82 a	83,10 ns	282,95 bc	-6,73 a	13,69 ns
	TO	0,82 a	62,8 ns	573,75 a	-6,2 a	11,15 b
05-abr	T1	0,77 b	66,43 ns	305,25 b	-10,1 b	12,90 ab
(ETO 3,17mm)	T2	0,80 ab	68,4 ns	430,25b	-6,75 a	14,93 ab
	Т3	0,80 ab	72,9 ns	393,75 b	- 7,90 a	16,07 a
	TO	0,78 a	50,00 ns	518,25 ab	-5,59 a	36,72 a
27-abr	T1	0,71 b	57,53 ns	376,50 b	-7,50 b	19,11 b
(ETO 2,57mm)	T2	0,76 a	57,38 ns	523,25 a	-5,63 a	24,83 b
	T3	0,75 a	57,03 ns	469,75 ab	-5,66 a	25,76 b


TABLA 2: Parámetros de productividad, análisis foliar y		
Rendimiento	EUA	Ar

Tratamiento	Rendimiento	Peso baya (gr)	Dia == /:== ³ \	EUA	Argininas	Peso Poda		Boro	Manganeso
Tratamiento	(kg)	Peso baya (gr)	Kiego (m.)	(kg/m^3)	(mg/gr)	(kg)	Ravaz	(mg/kg)	(mg/kg)
TO	15,3 ns	1,26 ns	1,36	11,2 c	4,7 b	2,16 a	7,8 ns	38 a	509,33 ab
T1	13,3 ns	1,27 ns	0,95	13,96 b	7, 9 a	1,42 b	11,2 ns	28 c	535,33 ab
T2	15,6 ns	1,30 ns	0,95	16,39 a	3,7 b	1,73 ab	9,7 ns	35 ab	633,67 a
T3	13,9 ns	1,22 ns	0,95	14,68 ab	8,7 a	1,78 ab	8,1 ns	30,33 bc	399 b

ABLA 3:	Composición	básica y	, fenólica del vin	0.
---------	-------------	----------	--------------------	----

Tratamiento	Alcohol (G°L)	Acidez volatil (g/L ac. Acético)	рН	Acidez total (g/l de ac. Sulfúrico)	Intensidad de color	Matiz	Taninos (mg/L de catequina)	Fenoles (D280 nm)	Antocianas (mg/L)
TO	12,4 ns	0,604 ns	3,93 ns	3,49 ns	8,72 ns	0,67 ns	751,91 ns	31,34 ns	491,32 ns
T1	12,1 ns	0,66 ns	4,03 ns	3,26 ns	8,54 ns	0,67 ns	678,68 ns	32,38 ns	534,57 ns
T2	12,0 ns	0,662 ns	4,02 ns	3,16 ns	6,23 ns	0,68 ns	518,03 ns	28,31 ns	464,505 ns
Т3	12,5 ns	0,626 ns	3,93 ns	3,41 ns	7,44 ns	0,67 ns	702,73 ns	30,70 ns	481,22 ns

Tanto el nano riego como el mulch lograron obtener un mayor EUA sin afectar negativamente la fisiología y productividad de la planta. En ese aspecto, se logró generar un efecto mitigante a la aflicción hídrica del 25% a la cual se encuentran sometidos. El aumento de rendimiento por parte del nano-riego va de la mano con las estrategias y líneas de acción de viña Super Fruit. Con respecto al mulch, no logró un rendimiento mayor, sin embargo acumuló una mayor cantidad de reservas para la siguiente temporada y químicamente no hubo diferencias con el control. Es necesario realizar el análisis sensorial para determinar si las diferencias químicas detectadas se traducen en algo positivo o negativo en el vino y también se necesita realizar las respectivas evaluaciones de la siguiente temporada para ver la sostenibilidad productiva y económica de los manejos.